
0017~1)310,9356.~1l1+0.00 
I 1993 Pcrgamon Presr Ltd 

TECHNICAL NOTES 

A step change in wall heat flux in a turbulent channel flow 
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INTRODUCTION 

THE DIFFUSION of temperature downstream of a step change 
in wall temperature or wall heat flux in a turbulent shear 
flow is of interest from theoretical and practical points of 
view. It is well known that. due to the quasi-linearity of 
the mean enthalpy equation, the solution to the stepwise 
discontinuity in wall temperature can be used to calculate an 
arbitrary wall temperature distribution [I]. Measurements. 
which have been made mainly in a turbulent boundary layer 
[24]. have been useful for testing various calculation 
methods [5]. 

To provide experimental data comparable to those pre- 
viously obtained in a boundary layer. we consider here a step 
change in wall heat flux introduced at one wall of a fully 
developed channel flow (see Fig. I). The other (opposite) 
wall is maintained at approximately ambient temperature. 
The results are compared with those for a thermally fully 
developed flow obtained in a previous investigation [6] in 
which the full length of the channel wall was heated at a 
constant temperature. Hereafter, the fully developed thermal 
flow will be referred to as I; experimental details for 1 can 
be found in ref. [6]. 

EXPERIMENTAL CONDITIONS 

Measurements were made in a fully developed turbulent 
channel flow at a Reynolds number Re equal to 3300. The 
channel aspect ratio of I8 and the measurement locations 
(s/a > 250, where s is measured from the working section 
entrance; the channel half-width 6 is 21 mm) were sufficiently 
large to ensure a two-dimensional fully developed mean flow 
[7]. The channel walls were made of aluminium and perspex. 
respectively. The aluminium wall (I .27 cm thick) consisted 
of four plates, each of which could be heated separately 
by Sierracin pads (0.1 mm thick) connected in series and 
arranged in two rows of six along the length of each plate. 
The pads are bonded to the backs of the plates, thermal 

insulation (45 mm thick) ensuring that the heal loss was 
small. Only one (the most downstream) of the four plates 
was heated. The amount of heat supplied was controlled 
and the temperature of that plate continuously monitored 
using integrated-circuit temperature transducers embedded in 
small holes (using a highly conductive silicone compound) 
drilled at three .Y locations in the back of the plate. The 
temperature of the plate was homogeneous in the spanwise 
direction. The perspex wall was sufficiently thick (I9 mm) to 
represent a reasonable approximation to a constant tem- 
perature boundary condition. The difference r, - T, was 
maintained at about IO’C (sufficiently small for temperature 
to be considered a passive scalar). The temperature of the 
perspex wall was approximately T, The heating origin was 
at x, = 2566 and measurements were made at six down- 
stream locations (t/6 = 4.1. 7.6. 17.1, 21.4, 32.4. 47.6). The 
friction velocity I/, was obtained by the Preston tube method. 
Its value (0.133 m s-‘) agreed (k2%) with the value esti- 
mated from the streamwise pressure gradient. 

Measurements were made with a single cold wire (I .2 mm 
long, 1.27 pm dia. Pt-IO% Rh) which was operated in a 
constant current (50 PA) circuit and traversed across the 
channel with a mechanism with a least count of 0.01 mm. 
The initial distance of the wire from the wall was determined 
using the reflection method and a theodolite. A d.c. offset 
voltage was applied to the signal from the constant current 
circuit before it was amplified and low-pass filtered at a cut- 
off frequency of I .75 kHz. The signal was then digitized using 
a personal computer (I2 bit A/D converter, the sampling 
frequency was 3.5 kHz) and the data subsequently trans- 
ferred (via an ETHERNET optical cable link) to a VAX 780 
computer for analysis. 

RESULTS 

The mean temperature T’ = (T,- T)/T, was measured 
across the thermal layer at six different positions downstream 
of the starting point of heating. The results are shown in 
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FIG. I. Schematic arrangement of fully developed channel flow with a step change in heat flux applied to 
one of the walls. 
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NOMENCLATURE 

Cf skin friction coefficient, Greek symbols 
r,llU;; a thermal diffusivity. k/pc, 

5 specific heat at constant pressure UT turbulent thermal diffusivity 
h heat transfer coefficient 6 channel half-width 
k thermal conductivity s+ Reynolds number, 6U,/v 
NU Nusselt number, 2&/k = 2.9 Pr Re A boundary layer thickness 
Pr molecular Prandtl number, v/a A,, thermal layer thickness 
Pr, turbulent Prandtl number, vr/ar 8 temperature fluctuation 
4w thermometric wall heat flux 1’ kinematic viscosity 
Re Reynolds number, U&/v 5 distance downstream of heating origin, x--xi 
SI Stanton number, qy/Uo(Tw- To) P density 
T mean temperature Tw kinematic wall shear stress. 
T, friction temperature, qw/U, 
TW wall temperature Subscripts 
TX ambient temperature 
TO mean temperature at the centreline 0” 

wall value 
ccntreline value 

uo centreline velocity 03 ambient temperature. 
k free stream velocity 
ur friction velocity, ~1'~ Superscripts 
*. y coordinates : X, streamwise; y, normal to the ’ r.m.s. value 

wall -I- normalization by wall variables Cl,, T,, v 
XI unheated starting length. - conventional time average. 

Fig. 2 together with the distribution for I. To within the 
experimental scatter, there is reasonable collapse for t’ 
for the region y+ = yU,/v 6 30 and all values of t/6. The 
distribution in this region is also in good agreement with the 
mean temperature distribution for I. The good collapse for 
T+ in the wall region is partially ‘forced’ since T, was inferred 
from (ain/lay),.=O. This latter gradient was estimated (to an 
accuracy of f 5%) from the slope of the mean temperature 
profile in the region y+ $ 6. In the region y’ 2 30, there is 
an apparent increase in T+, for a fixed y+, as </a increases, 
with an asymptotic approach to 1. The difference, relative to 
I, in t+, is largest near the centreline, reflecting the stream- 
wise growth of the thermal layer. 

In contrast to the mean temperature, the r.m.s. tem- 
perature (Fig. 3) appears to require a relatively large distance 
before wall scaling is established, at least for the wall region. 
This trend, in qualitative agreement with that in the bound- 
ary layer [3], would imply a relatively slow streamwise evol- 
ution of the terms in the temperature variance budget (nor- 
malized by wall variables). At large values of t/S, the largest 
differences in 0’+, relative to 1, occur near the centre of 
the channel, as in Fig. 2. For the present experimental 
conditions, the length of the cold wire is about six times the 
Kolmogorov length scale in the near-wall region. One would 
therefore expect 0’ to be slightly underestimated due to the 
attenuation of the high wavenumber part of the temperature 
spectrum. It is difficult to estimate this error since the use of 
shorter wires is precluded by the need to keep the wire length 

to diameter ratio sufficiently large to avoid end conduction 
effects (e.g. ref. [8]). 

The Stanton number Sr is shown in Fig. 4 together with 
the ratio ZSf/cr (the Reynolds analogy factor) and the Nusselt 
number Nu = 26h/k = 2Sr PrRe. SI decreases with x and 
asymptotes to the value (-3.3 x IO-‘) for I. Similar behav- 
iours are observed for the Reynolds analogy factor which 
asymptotes to I. I4 and for the Nusselt number which asymp- 
totes to 15.4. 

An empirical expression for SI was obtained [9] for a 
boundary layer (Pr = I) with an unheated starting length x, 

s,2[l-(&~‘“]“9. (I) 

This relation (with X, = 2566 and cr = 6 x IO-‘), is in quite 
close agreement with the measured values of Sf, the Reynolds 
analogy factor and the Nusselt number (Fig. 4). 

Several simplifying assumptions, e.g. ref. [9], were used in 
the derivation of (I), which was obtained by solving the 
integral energy equation. One-seventh power laws were 
assumed for (U/U, l and (T, - h/( T, - T,), the molecular 
and turbulent Prandtl numbers were assumed to be equal to 
one, while A, the boundary layer thickness, was assumed to 
vary as x4’). This latter assumption is clearly not valid in the 
present case (6 = constant) ; also, the rate of growth for AH 
(m [“.j5), estimated from the present experiments, is smaller 
than that (w {“.“‘) in the boundary layer [2]. It seems unlikely 

FIG. 2. Mean temperature distributions and comparison with 
a thermally fully developed flow (I). 0, </a = 4.1 ; A, 7.6: 

0, 17.1 ; 0, 21.4; V, 32.4; 0,47.6. I: -, x/a = 279. 
FIG. 3. R.m.s. temperature distributions and comparison with 
thermally fully developed flow (I). Symbols are as in Fig. 2. 
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FIN;. 4. Stanton number Sr, Nusselt number Nu and Reynolds 
analogy factor 2S//cr. Closed symbols refer to a thermally 
fully developed flow (I). 0, experimental values of SI; 

A, 2Sr/c,: 0, Nu: -. equation (I). 

however that this difference would have a significant effect 
on (I), which has been validated in the boundary layer when 
AH << A [9]. Assuming that the present value of Pr (-0.72) 
is sufficiently close to Pr = I, the close agreement between 
(I) and the present values of SC (Fig. 4) indirectly suggests 
that the assumption Pr, = I (or Reynolds’ analogy) should 
be reasonable, at least in the near-wall region, for the present 
situation. Direct numerical simulation data in the near-wall 
region of a thermally fully developed channel flow [IO] have 
confirmed the validity of Pr, = I (when Pr is near I). It 
would certainly be of interest to extend this conformation to 
a developing thermal layer. 

CONCLUSIONS 

A step change in heat flux has been applied to one of the 
walls of a fully developed turbulent channel How, while the 
other (opposite) wall is at approximately ambient tempera- 
ture. In the near-wall region, scaling on wall variables is 
satisfied to a good approximation by the mean temperature 
but not by the r.m.s. temperature. Sufficiently downstream 
of the step, mean and r.m.s. temperature distributions 
asymptote to values obtained for a thermally fully developed 
How. The streamwise variation ofthe Stanton number. Reyn- 
olds analogy factor and Nusselt number downstream of the 
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heating origin is well described by an empirical relation 
obtained for a boundary layer with an unheated starting 
length. 
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INTRODUCTION 

IN RECENT years a number of articles have been written on 
the wave model of heat propagation where the finite velocity 
of the heat wave is taken into account [l-7]. The wave model 
of heat propagation leads to a precise analysis of many 
physical phenomena which, when analysed by Fourier’s law, 
will result in some errors [2]. 

Classical examples of the correctness of the heat wave 
model are intensive heating of solids by means of laser wave 
impulses of high amplitude and short duration [8]. electro- 
magnetic radiation [9], fast heat How in rarefied media [IO], 
etc. 

Fourier’s law. when used in the classical analysis of 
thermal problems. defines the dependence hetween heal tlux 

intensity and time-space distribution of temperature T. By 
combining Fourier’s law with the principle of energy con- 
servation we obtain a parabolic equation of heat diffusion 

where a = /C/PC is the diffusion coefficient and /i, p and c 
are thermal conductivity, mass density and specific heat. 
respectively. A physical interpretation of the solution of 
equation (I) shows that the speed of heat propagation is 
infinite. In some of the cases mentioned above, there is, 
by necessity, a generalization of the mathematical model 
represented by equation (I). To achieve this we use a model 
of heat wave damping. Then Fourier’s law undergoes modi- 
fication and. in combination with the principle of energy 


